f(x)=2sinxcosx-2cos^2x
=sin(2x) -cos(2x)-1
=√2 sin(2x -π/4) -1
最小正周期Tmin=2π/2=π
x∈[0,π/2],则 2x-π/4∈[-π/4,3π/4]
sin(2x-π/4)∈[-√2/2,1]
√2 (-√2/2) -1≤f(x)≤√2 -1
-2≤f(x)≤√2 -1
函数的取值范围为[-2,√2 -1].
f(x)=2sinxcosx-2cos^2x
=sin(2x) -cos(2x)-1
=√2 sin(2x -π/4) -1
最小正周期Tmin=2π/2=π
x∈[0,π/2],则 2x-π/4∈[-π/4,3π/4]
sin(2x-π/4)∈[-√2/2,1]
√2 (-√2/2) -1≤f(x)≤√2 -1
-2≤f(x)≤√2 -1
函数的取值范围为[-2,√2 -1].