解题思路:可以设∠EDC=x,∠B=∠C=y,根据∠ADE=∠AED=x+y,∠ADC=∠B+∠BAD即可列出方程,从而求解.
设∠EDC=x,∠B=∠C=y,
∠AED=∠EDC+∠C=x+y,
又因为AD=AE,所以∠ADE=∠AED=x+y,
则∠ADC=∠ADE+∠EDC=2x+y,
又因为∠ADC=∠B+∠BAD,
所以 2x+y=y+40,
解得x=20,
所以∠EDC的度数是20°.
故选C.
点评:
本题考点: 等腰三角形的性质.
考点点评: 本题主要考查了等腰三角形的性质,等边对等角.正确确定相等关系列出方程是解题的关键.