设截得的弦为AB,中点为M,
弦心距OM=√OA^2-AM^2)=√(5^2-4^2)=3.
点M在O为圆心,3为半径的圆上:x^2+y^2=9.(1)
点M又在OP为直径的圆上:(x+3/2)^2+(y+3/4)^2=45/16.(2)
(1),(2)联立求解,(2)-(1)得:3x+3y/2=-9,y=-2x-6,
代入(1),得:5x^2+24x+27=0,
(x+3)(5x+9)=0,
x=-3,y=0,M(-3,0),直线AB的方程:x=-3.
或x=-9/5,y=-12/5,直线AB的方程:y=-3x/4-15/4.