因为:1/[n(n+1)]=1/n-1/(n+1)
所以:
1/2+1/6+1/12+……+1/[n(n+1)]
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+…+[(1/n-1/(n+1)]
=1-1/2+1/2-1/3+1/3……-1/(n+1)
=1-1/(n+1)
=(n+1)/(n+1)-1/(n+1)
=n/(n+1)
因为:1/[n(n+1)]=1/n-1/(n+1)
所以:
1/2+1/6+1/12+……+1/[n(n+1)]
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+…+[(1/n-1/(n+1)]
=1-1/2+1/2-1/3+1/3……-1/(n+1)
=1-1/(n+1)
=(n+1)/(n+1)-1/(n+1)
=n/(n+1)