(2) 设F(x) = ∫{0,x} f(t)dt.
必要性:若F(x)以T为周期,则F(x+T) = F(x).
特别的,F(T) = F(0) = 0,即∫{0,T} f(t)dt = 0.
充分性:若∫{0,T} f(t)dt = 0.
由f(x)以T为周期,根据(1)的结论有∫{x,x+T} f(t)dt = ∫{0,T} f(t)dt = 0对任意x成立.
于是F(x+T)-F(x) = ∫{0,x+T} f(t)dt - ∫{0,x} f(t)dt = ∫{x,x+T} f(t)dt = 0.
即F(x+T) = F(x)对任意x成立,也即F(x)以T为周期.
如果没猜错的话,下面写的g(x)就是我所设的F(x)?
那么g(x)= g(x+T)就是∫{0,x} f(t)dt = ∫{0,x+T} f(t)dt的意思吧.