由 x²-3x+1=0 ,可得:
x+1/x = 3 ,
x²+1/x² = (x+1/x)²-2 = 7 ,
x³+1/x³ = (x+1/x)(x²+1/x²)-(x+1/x) = 18 ,
所以,
x^3/(x^6+1) = 1/(x³+1/x³) = 1/18 ;
x^5+1/x^5 = (x²+1/x²)(x³+1/x³)-(x+1/x) = 123 .
由 x²-3x+1=0 ,可得:
x+1/x = 3 ,
x²+1/x² = (x+1/x)²-2 = 7 ,
x³+1/x³ = (x+1/x)(x²+1/x²)-(x+1/x) = 18 ,
所以,
x^3/(x^6+1) = 1/(x³+1/x³) = 1/18 ;
x^5+1/x^5 = (x²+1/x²)(x³+1/x³)-(x+1/x) = 123 .