含数列的不等式证明令Cn=1/[(2^n)*n],求证C1+C2+C3+...+Cn < 7/10
1个回答
很简单,适当放缩即可:
c1+c2+...+cn=1/2+1/8+1/24+1/64+1/160+1/384+...
相关问题
若数列cn=(2^n+1)/(2^n-1)求证c2+c3+…+cn<n+1/3
已知cn=1-(1/4)^n,求证:c1*c2*c3*c4……cn>2/3
C0/n+C1/n+C2/n+C3/n……Cn-1/n+Cn/n n属于自然数的值
数学不等式证明:已知cn=1/√n ,请证明c1+c2+…+c2011
求证:1+4Cn1+7Cn2+10Cn3+…+(3n+1)Cnn=(3n+2)•2n-1.
(c1)/(3^0)+(c2)/(3^1)+(c3)/(3^2)+……+(cn)/(3^n-1)=2n+1,S(cn)=
(C0/n)²+(C1/n)²+(C2/n)²+…+(Cn/n)²值证明等于C2
an=2n-1,bn=2*(1/3)^n,cn=anbn,求证c(n+1)
求证Cn^0+3Cn^1+5Cn^2+……+(2n+1)Cn^n =(n+1)2^n
(1)求证:Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1 (n∈N*)