(1)na(n+1)=Sn+n(n+1)
(n-1)an=S(n-1)+(n-1)n
两式相减,得na(n+1)-(n-1)an=an+2n
即a(n+1)=an+2
所以an=2n
(2)Sn=n(n+1)
Tn=(4/5)^n[n(n+1)]
T(n+1)/Tn=4(n+2)/(5n)
当n1
当n=8时T(n+1)/Tn=1
当n>9时T(n+1)/Tn
(1)na(n+1)=Sn+n(n+1)
(n-1)an=S(n-1)+(n-1)n
两式相减,得na(n+1)-(n-1)an=an+2n
即a(n+1)=an+2
所以an=2n
(2)Sn=n(n+1)
Tn=(4/5)^n[n(n+1)]
T(n+1)/Tn=4(n+2)/(5n)
当n1
当n=8时T(n+1)/Tn=1
当n>9时T(n+1)/Tn