∠BAC=90°,AD⊥BC,
∠ABC+∠C=90°=∠ABC+∠BAD,
∠C=∠BAD,
∠DAC+∠C=90°=∠ABC+∠C,
∠DAC=∠ABC,
∠ADC=∠BDA=90°,
RT⊿ADC∽RT⊿BDA,[AAA]
AD/BD=AC/AB,
AB/AC=BD/AD;
∠BAC=90°,E为AC中点,
所以AE=EC=DE,
∠C=∠EDC=∠FDB,
∠FBD=∠BAC+∠C=90°+∠C;
∠FDA=∠ADB+∠FDB=90°+∠C;
∠FBD=∠FDA,
∠F=∠F,
故∠FDB=∠FAD,
⊿DBF∽⊿ADF,[AAA]
DF/AF=DB/AD=AB/AC,
即AB/AC=DF/AF.