证明:
设x1,x2是定义域上是任意二个数,且x1>x2.
f(x1)=x1+根号(x1的平方+1)
f(x2)=x2+根号(x2的平方+1)
因为x1>x2,所以,(x1的平方+1)>(x2的平方+1)
所以,(x1+根号(x1的平方+1))>(x2+根号(x2的平方+1)),
(x1+根号(x1的平方+1))/(x2+根号(x2的平方+1))>1
f(x1)÷f(x2)=(x1+根号(x1的平方+1))/(x2+根号(x2的平方+1))
因为(x1+根号(x1的平方+1))/(x2+根号(x2的平方+1))>1
所以f(x1)>f(x2)
所以函数f(x)在其定义域上是单调增函数.
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!