解题思路:若一元二次方程有两个实数根,则根的判别式△=b2-4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.
∵方程有两个实数根,
∴根的判别式△=b2-4ac=4(k+1)2-4k2=8k+4≥0,
即k≥-[1/2],
又∵k≠0,
∴k≥-[1/2]且k≠0.
点评:
本题考点: 根的判别式.
考点点评: 本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.
解题思路:若一元二次方程有两个实数根,则根的判别式△=b2-4ac≥0,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为0.
∵方程有两个实数根,
∴根的判别式△=b2-4ac=4(k+1)2-4k2=8k+4≥0,
即k≥-[1/2],
又∵k≠0,
∴k≥-[1/2]且k≠0.
点评:
本题考点: 根的判别式.
考点点评: 本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.