(1)f(x1)+f(x2)
=log2(1+x1)/(1-x1)+log2(1+x2)/(1-x2)
=log2[(x1+1)(x2+1)/(x1-1)(x2-1)]
若x=(x1+x2)/(1+x1x2)
则(1+x)/(1-x)
=[1+(x1+x2)/(1+x1x2)]/[1-(x1+x2)/(1+x1x2)]
上下乘(1+x1x2)
=(1+x1x2+x1+x2)/(1+x1x2-x1-x2)
=(x1+1)(x2+1)/(x1-1)(x2-1)
所以f((x1+x2)/(1+x1x2))=log2[(x1+1)(x2+1)/(x1-1)(x2-1)]
所以f(x1)+f(x2)=f((x1+x2)/(1+x1x2))
(2)由f(x)=log2 (1+x/1-x),x属于(-1,1)
则f(-x)=log2 (1-x/1+x)=log2(1+x/1-x)^(-1)=-log2 1+x/1-x=-f(x)
又x属于(-1,1),定义域关于原点对称
则f(x)是奇函数
则f(b)=-f(-b)=-1/2
又f[(a+b)/(1+ab)]=f(a)+f(b)
=f(a)-1/2=1
则f(a)=3/2