高一函数证明题f(x)=log2 (1+x)/(1-x)(1)求证:f(x1)+f(x2)=f[(x1+x2)/(1+x

3个回答

  • (1)f(x1)+f(x2)

    =log2(1+x1)/(1-x1)+log2(1+x2)/(1-x2)

    =log2[(x1+1)(x2+1)/(x1-1)(x2-1)]

    若x=(x1+x2)/(1+x1x2)

    则(1+x)/(1-x)

    =[1+(x1+x2)/(1+x1x2)]/[1-(x1+x2)/(1+x1x2)]

    上下乘(1+x1x2)

    =(1+x1x2+x1+x2)/(1+x1x2-x1-x2)

    =(x1+1)(x2+1)/(x1-1)(x2-1)

    所以f((x1+x2)/(1+x1x2))=log2[(x1+1)(x2+1)/(x1-1)(x2-1)]

    所以f(x1)+f(x2)=f((x1+x2)/(1+x1x2))

    (2)由f(x)=log2 (1+x/1-x),x属于(-1,1)

    则f(-x)=log2 (1-x/1+x)=log2(1+x/1-x)^(-1)=-log2 1+x/1-x=-f(x)

    又x属于(-1,1),定义域关于原点对称

    则f(x)是奇函数

    则f(b)=-f(-b)=-1/2

    又f[(a+b)/(1+ab)]=f(a)+f(b)

    =f(a)-1/2=1

    则f(a)=3/2