分析:根据AD⊥BC,CE⊥AB,可得出∠EAH+∠B=90°∠EAH+∠AHE=90°,则∠B=∠AHE,则△AEH≌△CEB,从而得出CE=AE,.
∵AD⊥BC,
∴∠EAH+∠B=90°,
∵CE⊥AB,
∴∠EAH+∠AHE=90°,
∴∠B=∠AHE,
∵EH=EB,
∴△AEH≌△CEB,
∴CE=AE,
∴CE=4
分析:根据AD⊥BC,CE⊥AB,可得出∠EAH+∠B=90°∠EAH+∠AHE=90°,则∠B=∠AHE,则△AEH≌△CEB,从而得出CE=AE,.
∵AD⊥BC,
∴∠EAH+∠B=90°,
∵CE⊥AB,
∴∠EAH+∠AHE=90°,
∴∠B=∠AHE,
∵EH=EB,
∴△AEH≌△CEB,
∴CE=AE,
∴CE=4