(2)∵y'=e^(x-y)
==>dy/dx=e^x*e^(-y)
==>e^ydy=e^xdx
==>e^y=e^x+C (C是常数)
∴原方程的通解是e^y=e^x+C.
(4)∵y'sinx=ylny
==>sinxdy/dx=ylny
==>dy/(ylny)=dx/sinx
==>d(lny)/lny=cscxdx
==>ln│lny│=-ln│cscx+cotx│+ln│C│ (C是常数)
==>lny=C/(cscx+cotx)
∴原方程的通解是lny=C/(cscx+cotx)
∵当x=π/2时,y=e
∴代入通解,得C=1
故原方程满足所给初始条件的特解是lny=1/(cscx+cotx).