∵ AC = BC,D是BC的中点.
∴ AC = 2CD.
∵ ∠ACB = 90°,BF∥AC.
∴ ∠CBF = 90°.
∵ CE⊥AD
∴ ∠CED = 90°.
在△ACD与△CED中,∠CDA = ∠CDE,∠ACD = ∠CED,所以△ACD ∽ △CED.
∴ ∠ECD = ∠EAD.
在△ACD与△CBF中,AC = BC,∠CAD = ∠ECD = ∠BCF,∠ACD = ∠CBF,所以△ACD≌△CBF.
∴ CD = BF = (1/2)AC
∴ AC = 2BF
∵ AC = BC,D是BC的中点.
∴ AC = 2CD.
∵ ∠ACB = 90°,BF∥AC.
∴ ∠CBF = 90°.
∵ CE⊥AD
∴ ∠CED = 90°.
在△ACD与△CED中,∠CDA = ∠CDE,∠ACD = ∠CED,所以△ACD ∽ △CED.
∴ ∠ECD = ∠EAD.
在△ACD与△CBF中,AC = BC,∠CAD = ∠ECD = ∠BCF,∠ACD = ∠CBF,所以△ACD≌△CBF.
∴ CD = BF = (1/2)AC
∴ AC = 2BF