原式=a^2-10ac+(5c)^2+a^2-ab+ab+1/(ab)+1/(a^2-ab)
=(a-5c)^2+[ab+1/(ab)]+[a^2-ab+1/(a^2-ab)] ≥0+2+2
等号成立条件是b=1/a =a-b a=根号2 b=1/根号2
原式=a^2-10ac+(5c)^2+a^2-ab+ab+1/(ab)+1/(a^2-ab)
=(a-5c)^2+[ab+1/(ab)]+[a^2-ab+1/(a^2-ab)] ≥0+2+2
等号成立条件是b=1/a =a-b a=根号2 b=1/根号2