用分部积分法,
(uv)'=u'v+uv',
设u=ln(1+x^2),v'=1,
u'=2x/(1+x^2),v=x,
原式=xln(1+x^2)-2∫x^2dx/(1+x^2)
=xln(1+x^2)-2∫(1+x^2-1)dx(1+x^2)
=xln(1+x^2)-2∫dx+2∫dx/(1+x^2)
=xln(1+x^2)-2x+2arctanx+C.
用分部积分法,
(uv)'=u'v+uv',
设u=ln(1+x^2),v'=1,
u'=2x/(1+x^2),v=x,
原式=xln(1+x^2)-2∫x^2dx/(1+x^2)
=xln(1+x^2)-2∫(1+x^2-1)dx(1+x^2)
=xln(1+x^2)-2∫dx+2∫dx/(1+x^2)
=xln(1+x^2)-2x+2arctanx+C.