(1) y=-x²+2x+3 ①
分别将y=0、x=0代入①得:
A(-1,0)、B(3,0)、C(0,3)
根据抛物线方程容易求得:
P(1,4)、M(1,2)
进而求得S△PMB=2,BM=2√2
设Q(x,y).
即Q到y=-x+3(直线BC)的距离(△QMB中MB边上的高)为√2|x+y-3|/2
所以S△QMB=BM·√2|x+y-3|/2÷2=|x+y-3|=S△PMB=2
所以x+y-3=±2
y=5-x ②
或 y=1-x ③
①②联立求解得:
x1=1,y1=4(即P点,重合,舍去)
x2=2,y2=3
①③联立求解得:
x3=(3-√17)/2,y3=[-1+√(17)]/2
x4=(3+√17)/2,y4=[-1-√(17)]/2
(x2,y2)、(x3,y3)、(x4,y4)即为所求Q坐标.
(2) △RMB与△RMP有公共边RM
只要保证两个三角形公共边上的高相等,面积即相等.
也就是说RM通过P、B中点(D)即可.
P、B中点D(2,2)
直线MDR为:y=2
将y=2代入①得:
x1=1-√2,y1=2(在对称轴右面,不合题意,舍去)
x2=1+√2,y2=2
(1+√2,2)即为所求R坐标.