已知f(x)=sin(wx+φ)w>0 0≤φ≤2π 的图像关于点(3π/4,0)对称 且f(x)函数在(π/8,π/2

1个回答

  • 已知f(x)=sin(wx+φ)w>0 0≤φ≤2π 的图像关于点(3π/4,0)对称 且f(x)函数在(π/8,π/2)上是减函数 (1)求w和φ的值 (2)若w的值不大于1 设g(x)=2f(3tx/2+π/2)若g(x)在(-π/3,π/3)上是增函数 求t的取值范围

    f(x)是R上的偶函数 设g(x)=2f(3tx/2+3π/4)上面打错

    (1)解析:∵f(x)=sin(wx+φ)(w>0,0≤φ≤2π) 是R上的偶函数

    ∴f(x)=sin(wx+φ)=cos(wx)==>φ=π/2

    f(x)=sin(wx+π/2)

    ∵f(x) 在(π/8,π/2)上是减函数

    wx+π/2=3π/2==>x=π/(w)

    令π/(w)>= π/2==>0当k=2时,w=2

    ∴w=2==> f(x)=sin(2x+π/2)

    (2)解析:∵0