解题思路:根据∠BOC=90°且OA⊥平面BOC,得到三棱锥的三条侧棱两两垂直,以三条侧棱为棱长得到一个长方体,由圆的对称性知长方体的各个顶点都在这个球上,长方体的体积就是圆的直径,求出直径,得到圆的面积.
∵∠BOC=90°,OA⊥平面BOC,
∴三棱锥的三条侧棱两两垂直,
∴可以以三条侧棱为棱长得到一个长方体,
由圆的对称性知长方体的各个顶点都在这个球上,
∴球的直径是
1+4+9=
14,
∴球的半径是
14
2
∴球的表面积是4π×(
14
2)2=14π,
故答案为:14π.
点评:
本题考点: 球的体积和表面积.
考点点评: 本题考查球的体积与表面积,考查球与长方体之间的关系,考查三棱锥与长方体之间的关系,本题考查几何中常用的一种叫补全图形的方法来完成,考查空间想象能力.