两边对x求导得f(x)=[x(1+cosx)]'=1+cosx+x(-sinx)=1+cosx-xsinx
设f(x)在[0,+∞)上连续,且∫(0,x)f(t)dt=x(1+cosx),则f(x)=?
1个回答
相关问题
-
设f(x)在[a,b]上连续且f(x)>0,又F(x)=∫(a,x)f(t)dt+f(x,b)(1/f(t))dt证明:
-
设f(x)连续,且f(0)0,求极限lim(x~0)∫x上0下(x-t)f(t)dt/x∫x上0下(x-t)dt
-
设f(x)连续,且∫(下0上x^2-1) f(t)dt=1+x^3,则f(8)=?
-
设函数f(x)在(0,+∞)上连续可导,且有等式f(x)=1+[1/x]∫x1f(t)dt,则f(x)=______.
-
设f(x)在(-∞,+∞)内连续,且f(x)>0,证明F(x)=[∫(0-x)tf(t)dt]/[∫(0-x)f(t)d
-
设f(x)在区间[0,1]上连续,且满足f(x)=x²∫(0,1)f(t)dt+3,求∫(0,1)f(x)dx
-
设f(x)连续,且f(x)=2+∫(0到x)f(t)dt,求f(x).
-
设f(x)连续且满足f(x)=-cosx+∫f(t)dt,求f(x).注:积分上限为x下限为0
-
设函数f x连续 ∫[0,x^2-1] f(t) dt=2x(x>0)则f(3)=
-
f(x)在[0,1]上连续,且满足f(x)=e^x+∫[1,0]2f(t)dt,求f(x)