解;
f(x) = (5ex^3 + 2π x^2 + 3√2 x + 7)/ log4(16) + log6(36) + log9(81)
=(5ex^3 + 2π x^2 + 3√2 x + 7)/ (2+2+2)
=1/6(5ex^3 + 2π x^2 + 3√2 x + 7)
f'(x)=1/6(15ex^2+4πx+3√2)
f‘(2)=1/6(60e+8π+3√2)
=10e+4/3π+√2/2
解;
f(x) = (5ex^3 + 2π x^2 + 3√2 x + 7)/ log4(16) + log6(36) + log9(81)
=(5ex^3 + 2π x^2 + 3√2 x + 7)/ (2+2+2)
=1/6(5ex^3 + 2π x^2 + 3√2 x + 7)
f'(x)=1/6(15ex^2+4πx+3√2)
f‘(2)=1/6(60e+8π+3√2)
=10e+4/3π+√2/2