求不定积分x^2e^x/(2+x)^2dx

1个回答

  • ∫ x²e^x/(2 + x)² dx

    = - ∫ x²e^x d[1/(2 + x)]

    = - x²e^x/(2 + x) + ∫ 1/(2 + x) d(x²e^x)

    = - x²e^x/(2 + x) + ∫ 1/(2 + x) * (2 + x)xe^x dx

    = - x²e^x/(2 + x) + ∫ xe^x dx

    = - x²e^x/(2 + x) + ∫ x de^x

    = - x²e^x/(2 + x) + xe^x - ∫ e^x dx

    = - x²e^x/(2 + x) + xe^x - e^x + C

    = [- x²e^x + (2 + x)xe^x - (2 + x)e^x]/(2 + x) + C

    = (-x²e^x + x²e^x + 2xe^x - 2e^x - xe^x)/(2 + x) + C

    = (xe^x - 2e^x)/(2 + x) + C

    = [(x - 2)/(x + 2)]e^x + C