∫ x²e^x/(2 + x)² dx
= - ∫ x²e^x d[1/(2 + x)]
= - x²e^x/(2 + x) + ∫ 1/(2 + x) d(x²e^x)
= - x²e^x/(2 + x) + ∫ 1/(2 + x) * (2 + x)xe^x dx
= - x²e^x/(2 + x) + ∫ xe^x dx
= - x²e^x/(2 + x) + ∫ x de^x
= - x²e^x/(2 + x) + xe^x - ∫ e^x dx
= - x²e^x/(2 + x) + xe^x - e^x + C
= [- x²e^x + (2 + x)xe^x - (2 + x)e^x]/(2 + x) + C
= (-x²e^x + x²e^x + 2xe^x - 2e^x - xe^x)/(2 + x) + C
= (xe^x - 2e^x)/(2 + x) + C
= [(x - 2)/(x + 2)]e^x + C