一元三次缺项方程ax^3+bx+c=0有通解公式吗?如果有,是什么?如果没有,这类方程一般怎么解.有例子可以举吗?

1个回答

  • (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到

    (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))

    (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为

    x^3=(A+B)+3(AB)^(1/3)x,移项可得

    (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知

    (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得

    (6)A+B=-q,AB=-(p/3)^3

    (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即

    (8)y1+y2=-(b/a),y1*y2=c/a

    (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a

    (10)由于型为ay^2+by+c=0的一元二次方程求根公式为

    y1=-(b+(b^2-4ac)^(1/2))/(2a)

    y2=-(b-(b^2-4ac)^(1/2))/(2a)

    可化为

    (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)

    y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)

    将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得

    (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)

    B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)

    (13)将A,B代入x=A^(1/3)+B^(1/3)得

    (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)