cos(3π/8)*sin(5π/8)=?
1个回答
原式=- cos(3π/8)*sin[π-(5π/8)]
=-1/2*sin(3/4π)
=-√2/4
相关问题
(cosπ/8+sinπ/8)(cos^3π/8-sin^3π/8).
sin²π/8 -cos²π/8
-3sinπ/8cosπ/8 化简
化简:sin(a+5π)cos(-π/2-a)·cos(8π-a)/sin(a-3π)·sin(-a-4π)
【1】化简:sin(a-5π)/cos(3π-a)×cos(π/2-a)/sin(a-3π)×cos(8π-a)/sin
sin*2π/8+cos*27π/24+sinπ/8cos7π/24
sin5/3π+tan3/4π*cos8/3π=?求详解
化简[sin(k-5π)cos(-2/π-k)cos(8π-k)]/[sin(k-3π/2)sin(-k-4π)]
计算:cos(π/8)*sin(π/8)=?
计算,sin(π/12)-sin(5π/12)+2sin(π/8)sin(3π/8)