f(x)=(sin4x+cos4x+sin2xcos2x)/(2-2sinxcosx)=[(sin2x+cos2x)^2-2sin2xcos2x+sin2xcos2x]/(2-2sinxcosx)=(1+sinxcosx)/2
高中三角函数化简问题求化简函数f(x)=(sin4x+cos4x+sin2xcos2x)/(2-2sinxcosx)si
4个回答
相关问题
-
1、化简函数f(x)=(sin^4 x+cos^4 x+sin^2 xcos^2 x)/(2-sin2x)
-
化简cos^4x+sin^2xcos^2x+sin^2x
-
化简:cos4x-2sinxcosx-sin4x
-
化简sin^4x+sin^2xcos^2x+cos^2x=?(请写过程)
-
化简f(x)=sin(x-π/4)+4*(根号2)sinxcosx-cos(x+π/4)-2
-
f(x)=sin(x^2)+(√3)sinxcosx+2cos(x^2) 化简
-
f(x)=sin(x^2)+(√3)sinxcosx+2cos(x^2) 化简
-
化简f(x)=(√(sin(x/2))^4+4(cos(x/2))^2))-(√(cos(x/2))^4+4(sin(x
-
化简(2sinxcosx-2sin²x)(2sinxcosx+2sin²x)/sin4x 两种方法
-
cos^4 x-sin^4 x+2 sin^2 x化简