解题思路:利用三角形全等,得到结论,利用排除法即可求解.
∵等边△ABC和等边△CDE,
∴AC=BC,CD=CE,∠ACB=∠DCE=60°,
∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,
∴△ACD≌△BCE(SAS),
∴AD=BE①成立,排除C,
由(1)中的全等得∠CBE=∠DAC,
又∠ACB=∠DCE=60°,
∴∠BCD=60°,即∠ACP=∠BCQ,
又AC=BC,
∴△CQB≌△CPA(ASA),
∴CP=CQ,
又∵∠PCQ=60°可知△PCQ为等边三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE②成立,排除D,
由△CQB≌△CPA得AP=BQ③成立,排除A.
故选B.
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质.
考点点评: 作为选择题出现,应掌握这类型题基本的做题思路,判断出两对三角形全等,中间的三角形为等边三角形等.