1.原式=[(3x+3)/(x+1)(x-1)-(x-1)/(x+1)(x-1)]-x/(x+1)(x-1)]
=(2x+4)/(x方-1)/[x/(x方-1)
=(2x+4)/x
=2+4/x
当x=根号2时
原式=2+(4倍根号2)/2
=2+2倍根号2
2原式=(100-99)(100+99)+.+(2+1)(2-1)
=100+99+98+.2+1
=5050
1.原式=[(3x+3)/(x+1)(x-1)-(x-1)/(x+1)(x-1)]-x/(x+1)(x-1)]
=(2x+4)/(x方-1)/[x/(x方-1)
=(2x+4)/x
=2+4/x
当x=根号2时
原式=2+(4倍根号2)/2
=2+2倍根号2
2原式=(100-99)(100+99)+.+(2+1)(2-1)
=100+99+98+.2+1
=5050