x= ln(1+t^2)
dx/dt = 2t/(1+t^2)
y= t-arctant
dy/dt = 1- 1/(1+t^2)
= t^2/(1+t^2)
dy/dx = dy/dt .(dx/dt)
= t/2
d^2y/dx^2 = (1/2) dt/dx
= (1/2)/[ 2t/(1+t^2)]
= (1+t^2)/(4t)
x= ln(1+t^2)
dx/dt = 2t/(1+t^2)
y= t-arctant
dy/dt = 1- 1/(1+t^2)
= t^2/(1+t^2)
dy/dx = dy/dt .(dx/dt)
= t/2
d^2y/dx^2 = (1/2) dt/dx
= (1/2)/[ 2t/(1+t^2)]
= (1+t^2)/(4t)