sinA=√2/2,cosA=√2/2,cosB=2√5/5,sinA=√5/5
cosC=(180°-(A+B))=-cos(A+B)=-(cosA*cosB-sinA*sinB)=-√2/2(2√5/5-√5/5)=-√10/10
sinC=3√10/10
AB/BC=sinC/sinA,AB=(3√10/10*2√5)/√2/2=6,BD=3
CD²=BD²+BC²-2cosB*BD*BC=9+20-2*3*2√5*2√5/5=5
CD=√5
sinA=√2/2,cosA=√2/2,cosB=2√5/5,sinA=√5/5
cosC=(180°-(A+B))=-cos(A+B)=-(cosA*cosB-sinA*sinB)=-√2/2(2√5/5-√5/5)=-√10/10
sinC=3√10/10
AB/BC=sinC/sinA,AB=(3√10/10*2√5)/√2/2=6,BD=3
CD²=BD²+BC²-2cosB*BD*BC=9+20-2*3*2√5*2√5/5=5
CD=√5