证明:连接EG.
利用角平分线性质,可得FC=FG,AC=AG,∠AFC=∠AFG,
根据“SAS”,可得△ACE≌△AGE,所以∠AEC=∠AEG,即∠CEF=∠GEF,
又CD为Rt三角形斜边上的高,FG垂直AB,
所以CD‖FG,所以∠CEF=∠AFG,因为∠AFC=∠AFG,所以∠CEF=∠AFC,
所以CE=CF,又FC=FG,所以CE=FG.
证明:连接EG.
利用角平分线性质,可得FC=FG,AC=AG,∠AFC=∠AFG,
根据“SAS”,可得△ACE≌△AGE,所以∠AEC=∠AEG,即∠CEF=∠GEF,
又CD为Rt三角形斜边上的高,FG垂直AB,
所以CD‖FG,所以∠CEF=∠AFG,因为∠AFC=∠AFG,所以∠CEF=∠AFC,
所以CE=CF,又FC=FG,所以CE=FG.