f(x)=sin(x+π/6)+sin(x-π/6)+cosx+a
=sinx*cos(π/6)+cosx*sin(π/6)+sinx*cos(π/6)-cosx*sin(π/6)+cosx+a
=(√3)sinx+cosx+a
=2sin(x+π/3)+a
所以T=2π/1=2π
注:a*sin(x)+b*cos(x)=(√a^2+b^2)sin(x+y)
(tan(y)=a/b)
f(x)=sin(x+π/6)+sin(x-π/6)+cosx+a
=sinx*cos(π/6)+cosx*sin(π/6)+sinx*cos(π/6)-cosx*sin(π/6)+cosx+a
=(√3)sinx+cosx+a
=2sin(x+π/3)+a
所以T=2π/1=2π
注:a*sin(x)+b*cos(x)=(√a^2+b^2)sin(x+y)
(tan(y)=a/b)