设k1b1+k2b2+k3b3=0 (1)
令B=A-E
由已知等式,得
Bb1=0,Bb2=b1, Bb3=b2
(1)式两端同时左乘B,有
k1Bb1+k2Bb2+k3Bb3=0,即 k2b1+k3b2=0 (2)
(2)式两端同时左乘B,有
k3Bb2=0,即k3b1=0
∵b1≠0
∴k3=0
k3=0代入(2),得k2=0
k2=0,k3=0代入(1)中,得k1=0
∴b1.b2,b3线性无关
设k1b1+k2b2+k3b3=0 (1)
令B=A-E
由已知等式,得
Bb1=0,Bb2=b1, Bb3=b2
(1)式两端同时左乘B,有
k1Bb1+k2Bb2+k3Bb3=0,即 k2b1+k3b2=0 (2)
(2)式两端同时左乘B,有
k3Bb2=0,即k3b1=0
∵b1≠0
∴k3=0
k3=0代入(2),得k2=0
k2=0,k3=0代入(1)中,得k1=0
∴b1.b2,b3线性无关