1.证明:过A作AG⊥PE,交PE于G,连结AF,
因为AD⊥BC,PE⊥BC,所以四边形AGPD是矩形,且角E=角BAD,角AFE=角DAC,
又因为AB=AC,则有角BAD=角DAC,所以角E=角AFE,又AG⊥FE(PE)可得EG=FG,
PE+PF=PF+PG+EG=PF+FG+PG=2PG=2AD
2.(略)
1.证明:过A作AG⊥PE,交PE于G,连结AF,
因为AD⊥BC,PE⊥BC,所以四边形AGPD是矩形,且角E=角BAD,角AFE=角DAC,
又因为AB=AC,则有角BAD=角DAC,所以角E=角AFE,又AG⊥FE(PE)可得EG=FG,
PE+PF=PF+PG+EG=PF+FG+PG=2PG=2AD
2.(略)