f(x)=2cosxsin(x+π/3)-√3* (sin²x)+sinxcosx
=2cosx(sinxcosπ/3+cosxsinπ/3)-√3* (sin²x)+sinxcosx
=2cosx(1/2sinx+√3/2cosx)-√3* (sin²x)+sinxcosx
=sinxcosx+√3(1-sin²x)-√3sin²x+sinxcosx
=2sinxcosx+√3(1-2sin²x)
=sin2x+√3cos2x
=2(1/2sin2x+√3/2cos2x)
=2(sin2xcosπ/3+cos2xsinπ/3)
=2sin(2x+π/3)
当 2x+π/3 ∈[2kπ-π/2,2kπ+π/2]时,f(x)单调增,此时 x∈[kπ-5π/12,kπ+π/12];
2x+π/3 ∈[2kπ+π/2,2kπ+3π/2]时,f(x)单调减,此时 x∈[kπ+π/12,kπ+7π/12];
(2) 由于 f(x)=sinx关于直线 kπ+π/2 对称,关于点(kπ,0)对称;
令
2x+π/3=kπ+π/2
得 x=kπ/2 +π/12 k∈Z;
所以原函数的对称轴为 x=kπ/2 +π/12 k∈Z;
令 2x+π/3=kπ,得 x=kπ/2 -π/6,k∈Z;
所以原函数的对称中心为 (kπ/2 -π/6,0)其中 k∈Z;
(3) f(x)=2sin(2x+π/3)
当 2x+π/3 =2kπ+π/2时,f(x)取得最大值2,此时
x=kπ+π/12.