(a+√3)/(a-√3)+(b-√3)/(b+√3)=2+√6
通分得
[(a+√3)(b+√3)+(b-√3)(a-√3)]/[(a-√3)(b+√3)]
=[ab+a√3+b√3+3+ab-b√3-a√3+3]/[ab+a√3-b√3-3]
=[2ab+6]/[ab+a√3-b√3-3]
=[2ab+6]/[ab-3+√3(a-b)]
=[2ab+6]/[ab-3+2√6]
=2+√6
2ab+6=[ab-3+2√6](2+√6)
=2ab-6+4√6+ab√6-3√6+12
ab=-1
(a+√3)/(a-√3)+(b-√3)/(b+√3)=2+√6
通分得
[(a+√3)(b+√3)+(b-√3)(a-√3)]/[(a-√3)(b+√3)]
=[ab+a√3+b√3+3+ab-b√3-a√3+3]/[ab+a√3-b√3-3]
=[2ab+6]/[ab+a√3-b√3-3]
=[2ab+6]/[ab-3+√3(a-b)]
=[2ab+6]/[ab-3+2√6]
=2+√6
2ab+6=[ab-3+2√6](2+√6)
=2ab-6+4√6+ab√6-3√6+12
ab=-1