a(x^2 + b/a * x + c/a) = 0
∵ a ≠ 0,
∴ x^2 + b/a * x + c/a = 0
即 x^2 + b/a * x + (b/2a)^2 + [c/a - (b/2a)^2] = 0
则有 (x + b/2a)^2 = (b/2a)^2 - c/a
(1) 如果 (b/2a)^2 - c/a < 0,则方程无解,与原题不符,∴(b/2a)^2 - c/a ≥ 0
(2) 如果 (b/2a)^2 - c/a = 0,则该方程式只有一个根,与原题不符,∴(b/2a)^2 - c/a ≠ 0
综合(1)、(2)判断,(b/2a)^2 - c/a >0
即:[b^2/(4a^2) - 4ac]/4a^2 > 0
∵ a ≠ 0,∴4a^2 >0,
∴ b^2/(4a^2) - 4ac > 0