y^3y''+1=0
dy'/dx=-1/y^3
dy'/dy*dy/dx=-1/y^3
y'dy'=-dy/y^3
两边积分:y'^2/2=1/(2y^2)+C1
y'^2=1/y^2+C1
令x=1:0=1+C1,C1=-1
所以y'^2=1/y^2-1
dy/dx=±√(1-y^2)/|y|
即dy/dx=±√(1-y^2)/y
ydy/√(1-y^2)=±dx
两边积分:-√(1-y^2)=±x+C2
1-y^2=(±x+C2)^2
y^2+(±x+C2)^2=1
令x=1:-C2=±x
所以y^2+(x-1)^2=1