证明:
连接BD,延长BC到点E,使CE=CD,连接DE
∵AB=AD,∠BAD=60°,AB=AD
∴△ABD是等边三角形
∴∠ADB=60°,AD=BD
∵∠BCD=120°
∴∠DCE=60°
∴△DCE是等边三角形
∴∠CDE=60°,DC=DE
∴∠ADC=∠BDE
∴△ACD≌△BDE
∴AC=BE=BC+CD
证明:
连接BD,延长BC到点E,使CE=CD,连接DE
∵AB=AD,∠BAD=60°,AB=AD
∴△ABD是等边三角形
∴∠ADB=60°,AD=BD
∵∠BCD=120°
∴∠DCE=60°
∴△DCE是等边三角形
∴∠CDE=60°,DC=DE
∴∠ADC=∠BDE
∴△ACD≌△BDE
∴AC=BE=BC+CD