已知函数f(x)=3x/2x+3,数列{an}满足a1=1,an+1=f(an),n∈N*
1个回答
a(n+1)=f(an)=3an/(2an+3)
1/a(n+1)=(2an+3)/(3an)=2/3+1/an
1/a(n+1)-1/an=2/3
故数列{1/an}为等差数列.
相关问题
已知函数f(x)=3x2x+3,数列{an}满足a1=1,an+1=f(an),n∈N*,
已知函数f(x)=3x2x+3,数列{an}满足a1=1,an+1=f(an),n∈N*,
已知函数f(x)=(2x+3)/3x,数列{an}满足a1=1,an+1=f(1/an),n∈N*.
已知函数f(x)=x/3x+1,数列{an} 满足a1=1,a(n+1)=f(an) (n∈N*).(1)求数列{an}
已知函数f(x)=2x+3/3x,数列{an}满足a1=1,an+1=f(1/an),n属于N (1)求数列{an}通项
(2014•河东区一模)已知函数f(x)=[2x+3/3x],数列{an}满足a1=1,an+1=f([1an),n∈N
已知函数f(x)=2-|x|,无穷数列{an}满足an+1=f(an),n∈N*
已知f(x)=3x/(x+3),数列{an}满足an=f(an-1)(n>1,n∈N*,a1≠0) (1)求证:{1/a
设函数f(x)=(2x+3)/3x(x> 0),数列{an}满足a1=1,an=f(1/an-1a)(n∈n*,
已知函数f(x)=2x-a(a∈N*、x∈R),数列an满足a1=-a,an+1-an=f(n).