设t=√(x-1),则x=t^2+1,
dx=2tdt,
原式=∫t*2tdt/(t^2+1-2)
=2∫t^2dt/(t^2-1)
=2∫dt+2∫dt/(t^2-1)
=2t+ln|(t-1)/(t+1)|+C
=2√(x-1)+ln|[√(x-1)-1]-ln|[√(x-1)+1]+C.
设t=√(x-1),则x=t^2+1,
dx=2tdt,
原式=∫t*2tdt/(t^2+1-2)
=2∫t^2dt/(t^2-1)
=2∫dt+2∫dt/(t^2-1)
=2t+ln|(t-1)/(t+1)|+C
=2√(x-1)+ln|[√(x-1)-1]-ln|[√(x-1)+1]+C.