解题思路:延长CD交AB于E,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BDC,然后即可判断.
如图,
延长CD交AB于E,
∵∠A=90°,∠C=21°,
∴∠1=∠A+∠C=90°+21°=111°,
∵∠B=32°,
∴∠BDC=∠B+∠1=32°+111°=143°.
又∵∠BDC=148°,
∴这个零件不合格.
点评:
本题考点: 三角形的外角性质.
考点点评: 本题考查的是三角形外角的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.
解题思路:延长CD交AB于E,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BDC,然后即可判断.
如图,
延长CD交AB于E,
∵∠A=90°,∠C=21°,
∴∠1=∠A+∠C=90°+21°=111°,
∵∠B=32°,
∴∠BDC=∠B+∠1=32°+111°=143°.
又∵∠BDC=148°,
∴这个零件不合格.
点评:
本题考点: 三角形的外角性质.
考点点评: 本题考查的是三角形外角的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.