证明:∵BE⊥AC,CD⊥AB,
∴∠ADC=∠BDC=∠AEB=∠CEB=90°.
∵AO平分∠BAC,
∴∠1=∠2.
在△AOD和△AOE中,
∠ADC=∠AEB
∠1=∠2
OA=OA ,
∴△AOD≌△AOE(AAS).
∴OD=OE.
在△BOD和△COE中,
∠BDC=∠CEB
OD=OE
∠BOD=∠COE ,
∴△BOD≌△COE(ASA).
∴OB=OC.
证明:∵BE⊥AC,CD⊥AB,
∴∠ADC=∠BDC=∠AEB=∠CEB=90°.
∵AO平分∠BAC,
∴∠1=∠2.
在△AOD和△AOE中,
∠ADC=∠AEB
∠1=∠2
OA=OA ,
∴△AOD≌△AOE(AAS).
∴OD=OE.
在△BOD和△COE中,
∠BDC=∠CEB
OD=OE
∠BOD=∠COE ,
∴△BOD≌△COE(ASA).
∴OB=OC.