解题思路:(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;
(2)由四边形BCEF是菱形,连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值.
(1)证明:∵AF=DC,
∴AC=DF,
在△ABC和△DEF中,
AB=DE
∠A=∠D
AC=DF,
∴△ABC≌△DEF(SAS),
∴BC=EF,∠ACB=∠DFE,
∴BC∥EF,
∴四边形BCEF是平行四边形;
(2)连接BE,交CF于点G,
∵四边形BCEF是菱形,
∴CG=FG,BE⊥AC,
∵∠ABC=90°,AB=8,BC=6,
∴AC=
AB2+BC2=10,
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,
∴△ABC∽△BGC,
∴[BC/AC=
CG
BC],
即[6/10]=[CG/6],
∴CG=3.6,
∵FG=CG,
∴FC=2CG=7.2,
∴AF=AC-FC=10-7.2=2.8.
点评:
本题考点: 菱形的性质;平行四边形的判定.
考点点评: 此题考查了相似三角形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、菱形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,注意数形结合思想的应用,注意掌握辅助线的作法.