∵lim(n->∞){[(a+2b)n²+2n+1]/(bn+3)}=1/2
∴必有a+2b=0.(1) (若a+2b≠0,则lim(n->∞){[(a+2b)n²+2n+1]/(bn+3)}不存在)
==>lim(n->∞)[(2n+1)/(bn+3)]=1/2
==>lim(n->∞)[(2+1/n)/(b+3/n)]=1/2 (分子分母同除n)
==>(2+0)/(b+0)=1/2
==>2/b=1/2
==>b=4.(2)
故 由(1)式和(2)式得 a+b=-b=-4.
∵lim(n->∞){[(a+2b)n²+2n+1]/(bn+3)}=1/2
∴必有a+2b=0.(1) (若a+2b≠0,则lim(n->∞){[(a+2b)n²+2n+1]/(bn+3)}不存在)
==>lim(n->∞)[(2n+1)/(bn+3)]=1/2
==>lim(n->∞)[(2+1/n)/(b+3/n)]=1/2 (分子分母同除n)
==>(2+0)/(b+0)=1/2
==>2/b=1/2
==>b=4.(2)
故 由(1)式和(2)式得 a+b=-b=-4.