其实在三角形OBP中,OAP和OPB是相似的,
因此OP/OB=OA/OP,所以OP^2=OA•OB=√2×√18=6
故OP=√6
(那么为什么△OAP∽△OPB呢?
因为∠POA=∠BOP,∠OAP=∠OPB
∠OAP=∠OPB,记得是一个定理,必要的话这里给出一种证明:
如图,∠OPB=∠OPC+∠1=90°+∠1
而在△OPB中,90°+∠1=180°-∠C
∠C=∠2,所以90°+∠1=180-∠2=∠OAP
因此∠OAP=∠OPB)
其实在三角形OBP中,OAP和OPB是相似的,
因此OP/OB=OA/OP,所以OP^2=OA•OB=√2×√18=6
故OP=√6
(那么为什么△OAP∽△OPB呢?
因为∠POA=∠BOP,∠OAP=∠OPB
∠OAP=∠OPB,记得是一个定理,必要的话这里给出一种证明:
如图,∠OPB=∠OPC+∠1=90°+∠1
而在△OPB中,90°+∠1=180°-∠C
∠C=∠2,所以90°+∠1=180-∠2=∠OAP
因此∠OAP=∠OPB)