解题思路:根据抽象函数“凑”的原则,结合f(x1•x2)=f(x1)+f(x2),分别令x1=x2=1,x1=-1,x2=1,求得f(-1)=0,令x1=-1,易判断出f(-x2)与f(x2)的关系,再根据函数奇偶性的定义,令x1>1,当x>1时f(x)>0,我们易根据函数单调性的定义得到结论.即可得到答案.
令x1=x2=1,
∴f(1)=2f(1),
∴f(1)=0,
令x1=-1,x2=1
f(-1)=f(-1)+f(1),
∴f(-1)=0,
令x1=-1,
∴f(x1•x2)=f(-x2)=f(-1)+f(x2);
又∵f(-1)=0
∴f(-x2)=f(x2)
故f(x)是偶函数;
令x1>1,当x2∈(0,+∞)时,x1•x2>x2
∵当x>1时f(x)>0
∴f(x1•x2)=f(x1)+f(x2)>f(x2).
故f(x)在(0,+∞)上是增函数.
故结论正确的序号是①.
故答案为:①
点评:
本题考点: 抽象函数及其应用.
考点点评: 本题考查的知识点是函数奇偶性的判断,函数单调性的判断与证明及抽象函数值,其中熟练掌握函数性质的定义及判断方法是解答本题的关键.