f(x)=(sinx)^2+sin2x+(cosx)^2+2(cosx)^2
=1+sin2x+cos2x+1
=√2sin(2x+π/4)+2
sin(2x+π/4)=1时,f(x)取最大值=√2+2
此时2x+π/4=2kπ+π/2
2x=2kπ+π/4
x=kπ+π/8,k是整数
√2>0,所以f(x)单调性是sin一样
所以递增是2kπ-π/2
f(x)=(sinx)^2+sin2x+(cosx)^2+2(cosx)^2
=1+sin2x+cos2x+1
=√2sin(2x+π/4)+2
sin(2x+π/4)=1时,f(x)取最大值=√2+2
此时2x+π/4=2kπ+π/2
2x=2kπ+π/4
x=kπ+π/8,k是整数
√2>0,所以f(x)单调性是sin一样
所以递增是2kπ-π/2