因为1/n^(1/2)>1/n (n=1,2,3,...)
而∑1/n发散,由比较审敛法知∑1/n^(1/2)发散,即∑1/[2n^(1/2)]发散
又因为1/(n^(1/2)+n^(1/3)>1/[2n^(1/2)] (n=1,2,3,...)
由比较审敛法知∑[1/(n^(1/2)+n^(1/3)]发散
因为1/n^(1/2)>1/n (n=1,2,3,...)
而∑1/n发散,由比较审敛法知∑1/n^(1/2)发散,即∑1/[2n^(1/2)]发散
又因为1/(n^(1/2)+n^(1/3)>1/[2n^(1/2)] (n=1,2,3,...)
由比较审敛法知∑[1/(n^(1/2)+n^(1/3)]发散