1、已知A、B是锐角,且sinA=√5/5,sinB=√10/10.求A+B的值

1个回答

  • 1.∵A、B是锐角

    ∴cosA=√[1-(sinA)^2]=2√5/5 ,cosB=√[1-(sinB)^2]=3√10/10

    cos(A+B)=cosAcosB-sinAsinB=√2/2

    A+B=45º

    2.sinA+cosA=√2sin(A + π/4)=tanA

    ∵0<A<π/2

    ∴π/4<A+π/4<3π/4

    则√2/2<sin(A+π/4)<1

    ∴1<tanA<√2

    π/4<tanA<arctan√2 ,约为(π/4,π/3) ,选C

    3.tan(A-B)=(tanA-tanB)/(1+tanA*tanB)

    1 - [(tanA-tanB)/(1+tanA*tanB)]/tanA = (sinC)^2/(sinA)^2

    [(tanA)^2*tanB+tanB] / [tanA(1+tanA*tanB)] = (sinC)^2/(sinA)^2

    tanB*(secA)^2 / tanA(1+tanA*tanB) = (sinC)^2/(sinA)^2 ,(其中1 + tan^2A=sec^2A)

    tanB*(secA)^2*(sinA)^2 = tanA(1+tanA*tanB)*(sinC)^2

    tanB*tanA = (1+tanA*tanB)*(sinC)^2 ,(两边除以tanA)

    (tanB*tanA+1) - 1 = (1+tanA*tanB)*(sinC)^2

    1 - 1/(1+tanA*tanB) = (sinC)^2

    1 - (sinC)^2 = 1/(1+tanA*tanB)

    (cosC)^2 = 1/(1+tanA*tanB)

    1/(secC)^2 = 1/(1+tanA*tanB)

    (secC)^2 = 1+ tanA*tanB

    (secC)^2-1=tanA*tanB

    (tanC)^2=tanA*tanB

    4.原式=[sinAcos(π/6)+cosAsin(π/6)]^2+[sinAcos(π/6)-cosAsin(π/6)]^2-(sinA)^2

    =[(√3/2)sinA + (1/2)cosA]^2 + [(√3/2)sinA - (1/2)cosA]^2 - (sinA)^2

    =3(sinA)^2/2 + (cosA)^2/2 - (sinA)^2=1/2*[(sinA)^2 + (cosA)^2]

    =1/2

    5.①原式=2sin20°cos20°cos40°cos80°/ 4sin20°

    =sin40°cos40°cos80°/ 4sin20°

    =sin80°cos80°/ 8sin20°

    =sin160°/ 16sin20°

    =sin(180°-20°)/16sin20°

    =1/16

    ②原式=sin(90°-24°)sin(90°-48°)sin6°sin(90°-12°)

    =cos24°cos48°sin6°cos12°

    =2sin6°cos6°cos12°cos24°cos48°/2cos6°

    =sin12°cos12°cos24°cos48°/2cos6°

    =sin24°cos24°cos48°/4cos6°

    =sin48°cos48°/8cos6°

    =sin96°/16cos6°

    =1/16

    ③原式=sin67.5°/cos67.5° - sin22.5°/cos22.5°

    =cos22.5°/sin22.5° - sin22.5°/cos22.5°

    =[(cos22.5°)^2 - (sin22.5°)^2] /(sin22.5°*cos22.5°)

    =cos45°/ [(1/2)*sin45°]

    =2

    ④原式=1/2 * [cos(5π/12 + π/12) + cos(5π/12 - π/12)]

    =1/2 * [cos(π/2)+cos(π/3)]

    =1/2 * [0 + 1/2]

    =1/2 * 1/2

    =1/4

    6.原式=[(1+sinA-cosA)^2+(1+sinA+cosA)^2] / (1+sinA+cosA)(1+sinA-cosA)

    展开,整理后=4(1+sinA) / 2sinA(sinA+1)

    =2/sinA

    7.sin(π/4+A)sin(π/4-A)=(-1/2){cos[(π/4+A)+(π/4-A)] - cos[(π/4+A)-(π/4-A)]}

    =(-1/2)[cos(π/2) - cos2A] =(1/2)cos2A=1/6

    cos2A=1/3

    ∵π/2<A<π

    ∴π<2A<2π

    sin2A=-√[1-(cos2A)^2]=-2√2/3

    sin4A=2sin2A*cos2A=-4√2/9

    8.tan2B=2tanB / 1 - (tanB)^2 =3/4

    tan(A+2B)=(tanA + tan2B) / (1 - tanAtan2B) =1

    ∵A、B都为锐角

    ∴A+2B∈(0,270°)

    A+2B=45°或A+2B=225°

    9.原式=(1 - cos40°)/2 + (1 + cos160°)/2 + √3/2*(sin100°-sin60°)

    =1 + (cos160°- cos40°)/2 + √3/2*sin100°- 3/4

    =1 - sin[(160°+ 40°)/2]*sin[(160°- 40°)/2] + √3/2*sin100°- 3/4

    =1 - sin100°sin60° + √3/2*sin100°- 3/4

    =1/4

    10.原式=[2sin50° + sin10°(cos10°+√3sin10°)/cos10°]×√2sin80°

    = [2sin50°cos10° + 2sin10°(cos60°cos10°+sin60°sin10°)×√2sin80°/cos10°

    =2[sin50°cos10° + sin10°cos(60°-10°)]×√2

    = 2sin(50°+10°)×√2

    = √6

    11.原式=cos[2(π/3+A)]

    =2[cos(π/3+A)]^2 - 1

    =2{sin[π/2-(π/3+A)]}^2 - 1

    =2[sin(π/6-A)]^2 - 1

    =-7/9

    12.tan(π/4+A) = [tan(π/4)+tanA] / [1-tan(π/4)tanA] =3

    解得:tanA=1/2

    sin2A - 2(cosA)^2=sin2A - (1+cos2A) =sin2A - cos2A - 1

    =(2tanA)/[1+(tanA)^2] - [1-(tanA)^2]/[1+(tanA)^2] - 1

    =-4/5

    13.∵在△ABC中,B=π/3

    ∴A+C=2π/3 则(A+C)/2 =π/3

    ∵tan(A/2 + C/2) =[tan(A/2) + tan(C/2)] / [1 - tan(A/2)tan(C/2)] =tan(π/3)=√3

    ∴tan(A/2) + tan(C/2) = √3*[1 - tan(A/2)tan(C/2)]

    √3*[1 - tan(A/2)tan(C/2)] = √3 - √3*tan(A/2)tan(C/2)

    即:tan(A/2) + tan(C/2) + √3*tan(A/2)tan(C/2) = √3

    14.原式=√[2(cos5°)^2]=(√2)cos5°

    15.cos(A-π/6) + sinA = cosAcos(π/6) + sinAsin(π/6) + sinA

    =cosAcos(π/6) + (1/2)sinA + sinA

    =(√3/2)cosA + (3/2)sinA =4√3/5

    则(1/2)cosA + (√3/2)sinA = 4/5

    即:sin(A + π/6)=4/5

    sin(A + 7π/6)=sin[π+(A + π/6)]=-sin(A + π/6)=-4/5

    16.题目是不是应该“已知3sinB=sin(2A+B) ,求证:tan(A+B)=2tanA”这样呀?如果是的话,证明如下:

    3sinB=sin(2A+B)

    3sin[(A+B)-A] = sin[(A+B)+A]

    3[sin(A+B)cosA - cos(A+B)sinA] = sin(A+B)cosA + cos(A+B)sinA

    3sin(A+B)cosA - 3cos(A+B)sinA = sin(A+B)cosA + cos(A+B)sinA

    2sin(A+B)cosA = 4cos(A+B)sinA

    tan(A+B)=2tanA